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Resonance photon generation in a vibrating cavity

V V Dodonov†‡
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13565-905 S̃ao Carlos, SP, Brazil
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Abstract. The problem of photon creation from vacuum due to the non-stationary Casimir
effect in an ideal one-dimensional Fabry–Perot cavity with vibrating walls is solved in the
resonance case, when the frequency of vibrations is close to the frequency of some unperturbed
electromagnetic mode:ωw = p(πc/L0)(1+ δ), |δ| � 1, p = 1, 2, . . . (L0 is the mean distance
between the walls). An explicit analytical expression for the total energy in all the modes shows
an exponential growth if|δ| is less than the dimensionless amplitude of vibrationsε � 1, the
increment being proportional top

√
ε2 − δ2. The rate of photon generation from vacuum in the

(j+ps)th mode goes asymptotically to a constant valuecp2 sin2(πj/p)
√
ε2 − δ2/[πL0(j+ps)],

the numbers of photons in the modes with indicesp, 2p, 3p, . . . being the integrals of motion.
The total number of photons in all the modes is proportional top3(ε2− δ2)t2 in the short-time
and in the long-time limits. In the case of strong detuning|δ| > ε the total energy and the total
number of photons generated from vacuum oscillate with the amplitudes decreasing as(ε/δ)2

for ε � |δ|. The special cases ofp = 1 andp = 2 are studied in detail.

1. Introduction

Fifty years ago Casimir [1] showed that the presence of boundaries changes the ground
state of an electromagnetic field, leading to non-trivial quantum effects like theCasimir
force (see also [2–4]). Since then, the attention of many authors [5–40] was attracted to
non-stationary modificationsof the Casimir effect in the case ofmoving boundaries(a
detailed list of publications before 1995 was given in [21]). The present paper is devoted
to the special case of thenon-stationary Casimir effect(NSCE), namely, to the effect of
photon creation from vacuumin an ideal one-dimensional cavity (a model of the Fabry–Perot
interferometer) withvibrating boundaries.

As was understood recently [10, 14–23], notwithstanding that the maximum velocity
of the boundary achievable under laboratory conditions is very small compared with the
speed of light, a gradual accumulation of the small changes in the quantum state of the
field could finally result in a significant observable effect, if the boundaries of a cavity
perform small oscillations at a frequencyωw which is an integer multiple of the unperturbed
eigenfrequency of the fundamental electromagnetic modeω1 = πc/L0 (whereL0 is the
mean distance between the walls):ωw = pω1, p = 1, 2, . . . (recall that the spectrum of the
electromagnetic modes is equidistant in the case involved: the unperturbed frequency of the
pth mode equalsωp = pω1). The time evolution of the field in the short-time limitεω1t � 1
(whereε � 1 is a ratio of the amplitude of vibrations toL0) was considered in [7, 9] in
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the framework of Moore’s approach [5] and in [12, 15, 28, 34, 36] in the framework of
the ‘instantaneous basis’ method (IBM) described in section 2. The asymptotic solutions
to Moore’s equation in the caseεω1t � 1 were obtained in [10, 14, 27], and more general
solutions were found in [16, 19, 33]. A detailed study of the problem in the framework of
the IBM was given in [21] forp = 2 and in [22] forp = 1. Theshort-timelimit εω1t � 1
for an arbitrary integer value ofp was considered in [28]. However, in all the cited papers
the solutions were found under the condition of thestrict resonanceωw = ωp between the
mechanical and electromagnetic oscillations (except the recent article [38], where a detuned
three-dimensional cavity with a non-degenerate spectrum was considered). Evidently, such
a condition is an idealization.

The aim of the present paper is to study the case of anon-zero(although small) detuning
between the frequencies of the mechanical and field modes:

ωw = pω1(1+ δ) |δ| � 1 (1.1)

for any integerp = 1, 2, . . ., thus generalizing the results of [21, 22, 28]. It will be
shown that the photons can be created from vacuum provided the dimensionless detuning
parameter does not exceed the dimensionless amplitude of the wall vibrations, otherwise
the total number of photons generated inside the cavity exhibits small oscillations and goes
periodically to zero.

The plan of the paper is as follows. In section 2 we give general formulae related to
the field quantization in a cavity with moving boundaries and derive the simplified ‘reduced
equations’ in the resonance case. A simple explicit analytical expression for the total energy
of the field for all modes is found in section 3. Section 4 is devoted to the ‘semi-resonance’
casep = 1 when the frequency of the wall is close to the fundamental frequency of the
field. Under this condition new photons are not created, but the total energy of all the field
modes increases exponentially with time above the threshold or oscillates in the case of a
large detuning. The generic resonance case of an arbitraryp > 2 is analysed in section 5,
and the simplifications in the casep = 2 are considered in section 6. A brief discussion of
the results is given in section 7. Some details of calculations are given in an appendix.

2. Field quantization and reduced equations in the resonance case

Following the scheme of the field quantization in a cavity with time-dependent boundary
conditions first proposed by Moore [5], we consider a cavity formed by two infinite ideal
plates moving in accordance with the prescribed laws

xlef t (t) = u(t) xright (t) = u(t)+ L(t)
whereL(t) > 0 is the time dependent length of the cavity. Taking into account only
the electromagnetic modes whose vector potential is directed along thez-axis (‘scalar
electrodynamics’), one can write down the field operatorin the Heisenberg representation
Â(x, t) at t 6 0 (when both the plates were at rest at the positionsxlef t = 0 andxright = L0)
as (we assumec = h̄ = 1)

Âin = 2
∞∑
n=1

1√
n

sin
nπx

L0
b̂n exp

(−iωnt
)+ h.c. (2.1)

where b̂n means the usual annihilation photon operator andωn = πn/L0. The choice of
coefficients in equation (2.1) corresponds to the standard form of the field Hamiltonian

Ĥ ≡ 1

8π

∫ L0

0
dx

[(
∂A

∂t

)2

+
(
∂A

∂x

)2]
=
∞∑
n=1

ωn
(
b̂†nb̂n + 1

2

)
. (2.2)
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For t > 0 the field operator can be written as

Â(x, t) = 2
∞∑
n=1

1√
n

[
b̂nψ

(n)(x, t)+ h.c.
]
.

To find the explicit form of functionsψ(n)(x, t), n = 1, 2, . . ., one should take into account
that the field operator must satisfy

(i) the wave equation

∂2A

∂t2
− ∂

2A

∂x2
= 0 (2.3)

(ii) the boundary conditions

A(u(t), t) = A(u(t)+ L(t), t) = 0 (2.4)

(iii) the initial condition (2.1), which is equivalent to

ψ(n) (x, t < 0) = sin
nπx

L0
exp

(−iωnt
)
. (2.5)

Following the approach of [12, 15, 17] we expand the functionψ(n)(x, t) in a series with
respect to theinstantaneous basis:

ψ(n)(x, t > 0) =
∞∑
k=1

Q
(n)
k (t)

√
L0

L(t)
sin

(
πk[x − u(t)]

L(t)

)
n = 1, 2, . . . (2.6)

with the initial conditions

Q
(n)
k (0) = δkn Q̇

(n)
k (0) = −iωnδkn k, n = 1, 2, . . . .

This way we automatically satisfy both the boundary conditions (2.4) and the initial
condition (2.5). Putting expression (2.6) into the wave equation (2.3), after some algebra
one can arrive at an infinite set of coupled differential equations [34, 36] (k, n = 1, 2, . . .)

Q̈
(n)
k + ω2

k(t)Q
(n)
k = 2

∞∑
j=1

gkj (t)Q̇
(n)
j +

∞∑
j=1

ġkj (t)Q
(n)
j +O(g2

kj ) (2.7)

where

ωk(t) = kπ/L(t)
and the time dependent antisymmetric coefficientsgkj (t) read (j 6= k)

gkj = −gjk = (−1)k−j
2kj (L̇+ u̇εkj )(
j2− k2

)
L(t)

εkj = 1− (−1)k−j . (2.8)

For u = 0 (the left wall at rest) the equations like (2.7), (2.8) were derived in [12, 17].
If the wall comes back to its initial positionL0 after some interval of timeT , then the

right-hand side of equation (2.7) disappears, so att > T one gets

Q
(n)
k (t) = ξ (n)k e−iωkt + η(n)k eiωkt k, n = 1, 2, . . . (2.9)

ξ
(n)
k andη(n)k being some constant coefficients. Consequently, att > T the initial annihilation

operatorŝbn cease to be ‘physical’, due to the contribution of the terms with ‘incorrect signs’
in the exponentials exp(iωkt). Introducing a new set of ‘physical’ operatorsâm and â†m,
which result att > T in relations such as (2.1) and (2.2), but withâm instead ofb̂m, one
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can easily check that the two sets of operators are related by means of the Bogoliubov
transformation

âm =
∞∑
n=1

(
b̂nαnm + b̂†nβ∗nm

)
m = 1, 2, . . . (2.10)

with the coefficients

αnm =
√
m

n
ξ(n)m βnm =

√
m

n
η(n)m . (2.11)

The unitarity of the transformation (2.10) implies the following constraints:
∞∑
m=1

(
α∗nmαkm − β∗nmβkm

) = ∞∑
m=1

m

n

(
ξ (n)∗m ξ(k)m − η(n)∗m η(k)m

) = δnk (2.12)

∞∑
n=1

(
α∗nmαnj − β∗nmβnj

) = ∞∑
n=1

m

n

(
ξ (n)∗m ξ

(n)
j − η(n)∗m η

(n)
j

) = δmj (2.13)

∞∑
n=1

(
β∗nmαnk − β∗nkαnm

) = ∞∑
n=1

1

n

(
η(n)∗m ξ

(n)
k − η(n)∗k ξ (n)m

) = 0. (2.14)

The mean number of photons in themth mode equals the average value of the operator
â
†
mâm in the initial state|in〉 (recall that we use the Heisenberg picture), since just this

operator has a physical meaning att > T :

Nm ≡ 〈in|â†mâm|in〉
=
∑
n

|βnm|2+
∑
n,k

[(
α∗nmαkm + β∗nmβkm

)〈b̂†nb̂k〉 + 2Re
(
βnmαkm〈b̂nb̂k〉

)]

=
∞∑
n=1

m

n
|η(n)m |2+

∞∑
n,k=1

m√
nk

(
ξ (n)∗m ξ(k)m + η(n)∗m η(k)m

)〈b̂†nb̂k〉
+2Re

∞∑
n,k=1

m√
nk
η(n)m ξ

(k)
m 〈b̂nb̂k〉. (2.15)

The first sum on the right-hand sides of the relations above describes the effect of the photon
creation from vacuum due to the NSCE, while the other sums are different from zero only
in the case of a non-vacuum initial state of the field.

To find the coefficientsξ (n)k and η(n)k one has to solve an infinite set of coupled
equations (2.7) (k = 1, 2, . . .) with time-dependent coefficients, moreover, each equation
also contains an infinite number of terms. However, the problem can be essentially
simplified, if the walls perform small oscillations at the frequencyωw close to some
unperturbed field eigenfrequency:

L(t) = L0
(
1+ εL sin

[
pω1(1+ δ)t

])
u(t) = εuL0 sin

[
pω1(1+ δ)t + ϕ

]
.

Assuming|εL|, |εu| ∼ ε � 1, it is natural to look for solutions of equation (2.7) in a form
similar to (2.9):

Q
(n)
k (t) = ξ (n)k e−iωk(1+δ)t + η(n)k eiωk(1+δ)t (2.16)

but now we allow the coefficientsξ (n)k and η(n)k to be slowly varying functions of time.
The further procedure is well known in the theory of parametrically excited systems
[41–43]. First we put expression (2.16) in equation (2.7) and neglect the termsξ̈ , η̈
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(bearing in mind thaṫξ, η̇ ∼ ε, while ξ̈ , η̈ ∼ ε2), as well as the terms proportional to
L̇2 ∼ u̇2 ∼ ε2. Multiplying the resulting equation forQk by the factors exp

[
iωk(1+ δ)t

]
and exp

[−iωk(1+ δ)t
]

and performing averaging over fast oscillations with the frequencies
proportional toωk (since the functionsξ, η practically do not change their values at the time
scale of 2π/ωk) one can verify that only the terms with the differencej − k = ±p survive
on the right-hand side. Consequently, forevenvalues ofp the termu̇ in gkj (t) does not
make any contribution to the simplified equations of motion; thus only the rate of change
of the cavity lengthL̇/L0 is important in this case. In contrast, ifp is an odd number,
then the field evolution depends on the velocity of thecentre of the cavityvc = u̇ + L̇/2
and does not depend oṅL alone. Theseinterference effectswere discussed recently (in the
short-time limit εω1t � 1) in [36] (see also [23]). We assume hereafter thatu = 0 (i.e.
that the left wall is at rest), since this assumption does not change anything ifp is an even
number, whereas one should simply replaceL̇/L0 by 2vc/L0 if p is an odd number.

The final equations for the coefficientsξ (n)k andη(n)k contain only three terms with simple
time independentcoefficients on the right-hand sides:

d

dτ
ξ
(n)
k = (−1)p

[
(k + p)ξ (n)k+p − (k − p)ξ (n)k−p

]+ 2iγ kξ (n)k (2.17)

d

dτ
η
(n)
k = (−1)p

[
(k + p)η(n)k+p − (k − p)η(n)k−p

]− 2iγ kη(n)k . (2.18)

The dimensionless parametersτ (a ‘slow’ time) andγ read (ε ≡ εL)

τ = 1

2
εω1t γ = δ/ε. (2.19)

The initial conditions are

ξ
(n)
k (0) = δkn η

(n)
k (0) = 0. (2.20)

Note, however, that uncoupled equations (2.17), (2.18) hold only fork > p. This means
that they describe the evolution ofall the Bogoliubov coefficients only ifp = 1. Then
all the functionsη(n)k (t) are identically equal to zerodue to the initial conditions (2.20),
consequently, no photon can be created from vacuum. Ifp > 2, we havep − 1 pair of
coupledequations for the coefficients with lower indices 16 k 6 p − 1

d

dτ
ξ
(n)
k = (−1)p

[
(k + p)ξ (n)k+p − (p − k)η(n)p−k

]+ 2iγ kξ (n)k (2.21)

d

dτ
η
(n)
k = (−1)p

[
(k + p)η(n)k+p − (p − k)ξ (n)p−k

]− 2iγ kη(n)k . (2.22)

In this case some functionsη(n)k (t) are not equal to zero att > 0, thus we have the effect
of photon creation from the vacuum.

It is convenient to introduce a new set of coefficientsρ
(n)
k , whose lower indices run over

all integers from−∞ to∞:

ρ
(n)
k =


ξ
(n)
k k > 0

0 k = 0

−η(n)−k k < 0.

(2.23)

Then one can verify that equations (2.17), (2.18) and (2.21), (2.22) can be combined in a
single set of equations (k = ±1,±2, . . .)

d

dτ
ρ
(n)
k = (−1)p

[
(k + p)ρ(n)k+p − (k − p)ρ(n)k−p

]+ 2iγ kρ(n)k (2.24)
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with the initial conditions (n = 1, 2, . . .)

ρ
(n)
k (0) = δkn. (2.25)

A remarkable feature of the set of equations (2.24) is that its solutions satisfyexactly the
unitarity conditions (2.12)–(2.14) (although the coefficientsξ (n)k and η(n)k introduced via
equation (2.16) have additional phase factors in comparison with the coefficients defined in
equation (2.9), these phases do not affect the identities concerned), which can be rewritten
as

∞∑
m=−∞

mρ(n)∗m ρ(k)m = nδnk n, k = 1, 2, . . . (2.26)

∞∑
n=1

m

n

[
ρ(n)∗m ρ

(n)
j − ρ(n)∗−m ρ(n)−j

] = δmj m, j = 1, 2, . . . (2.27)

∞∑
n=1

1

n

[
ρ(n)∗m ρ

(n)
−j − ρ(n)∗j ρ

(n)
−m
] = 0 m, j = 1, 2, . . . . (2.28)

For example, calculating the derivativeI = (d/dτ)
∑∞

m=−∞ mρ(n)∗m ρ(k)m with the aid of
equation (2.24) and its complex conjugate counterpart one can easily verify thatI = 0.
Then the value of the right-hand side of (2.26) is a consequence of the initial conditions
(2.25). The identities (2.27) and (2.28) can be verified in a similar way, if one uses instead
of (2.24) the recurrence relations between the coefficientsρ(n)m with the same lower index
m but with differentupper indices derived in section 5.

Due to the initial conditions (2.25) the solutions to (2.24) satisfy the relation

ρ
(k+np)
j+mp ≡ 0 if j 6= k, j, k = 0, 1, . . . , p − 1

m = 0,±1,±2, . . . , n = 0, 1, 2, . . . . (2.29)

Consequently, the non-zero coefficientsρ(n)m form p independent subsets

y
(q,j)

k ≡ ρ(j+qp)j+kp j = 0, 1, . . . , p − 1, q = 0, 1, 2, . . . , k = 0,±1,±2, . . . .

(2.30)

The subsety(q,0)k is distinguished, becausey(q,0)k ≡ 0 for k 6 0 and the upper indexq begins
at q = 1. This subset is considered in detail in section 4. The generic case is studied in
section 5.

3. Total energy and the rate of photon generation

It is remarkable that to calculate the total energy of the field (normalized by ¯hω1)

E(τ ) ≡
∑
m

mNm(τ)

one does not need explicit expressions of the coefficientsρ(n)m (τ ). Calculating the first and
the second derivatives ofE(τ ) with the aid of the relations (2.23)–(2.28) one can obtain a
simple differential equation (see the appendix)

Ë = 4p2a2E + 4p2γ 2E(0)+ 1
6p

2(p2− 1)+ 2p2γ σ Im (G) (3.1)
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where

a =
√

1− γ 2 σ = (−1)p (3.2)

G = 2
∞∑
n=1

√
n(n+ p)〈b̂†nb̂n+p〉 +

p−1∑
n=1

√
n(p − n)〈b̂nb̂p−n〉 (3.3)

(if p = 1, the last sum in (3.3) should be replaced by zero). The quantum averaging is
performed over the initial state of the field (no matter pure or mixed). The initial value of
the total energy isE(0) = ∑∞

n=1 n〈b̂†nb̂n〉, whereas the initial value of the first derivative
Ė(τ ) reads (see the appendix)

Ė(0) = −pσRe(G). (3.4)

Consequently, the solution to equation (3.1) can be expressed as

E(τ ) = E(0)+ 2 sinh2(paτ)

a2

[
E(0)+ p

2− 1

24
+ γ σ

2
Im (G)

]
− σRe(G)sinh(2paτ)

2a
. (3.5)

We see that the total energy increases exponentially atτ → ∞, providedγ < 1. In the
special caseγ = 0 such asymptotic behaviour of the total energy was obtained also in
the frameworks of other approaches in [16, 17, 19, 20]. Here we have found the explicit
dependence of the total energy on time in the whole interval 06 τ <∞, as well as a non-
trivial dependence on the initial state of field, which is contained in the constant parameter
G. This parameter is equal to zero for initial Fock or thermal states of the field. However,
in the generic caseG is different from zero, and it can affect significantly the total energy,
if E(0) � 1. Consider, for example, the casep = 2. If initially the first mode (n = 1)
was in the coherent state|α〉 with α = |α|eiφ , |α| � 1, and all other modes were not
excited, thenE(0) = |α|2, G = α2, so for τ � 1 andγ = 0 (exact resonance) we have
E(τ � 1) ≈ 1

4|α|2e4τ
[
2− cos(2φ)

]
. The maximum value of the energy in this case is three

times larger than the minimum value, depending on the phaseφ.
According to (3.5), the initial stage of the evolution does not depend on the detuning

parameterγ for all states which yield Im(G) = 0, since atτ → 0 one has

E(τ ) ≈ E(0)− σRe(G)pτ + 2

[
E(0)+ p

2− 1

24
+ γ σ

2
Im (G)

]
(pτ)2. (3.6)

Equation (3.6) isexact in the case ofγ = 1. If γ > 1, then one should replace each
function sinh(ax)/a in (3.5) by its trigonometric counterpart sin(ãx)/ã, where

ã =
√
γ 2− 1. (3.7)

In this case the total energyoscillatesin time with the periodπ/(pã), returning to the initial
value at the end of each period. For a large detuningγ � 1 the amplitude of oscillations
decreases asγ−1 if ReG 6= 0 and asγ−2 otherwise. For the initial vacuum state of field we
have

E (vac)(τ ) = p2− 1

12a2
sinh2(paτ) . (3.8)

The total number of photons in all the modes equalsN = N (vac) +N (cav), where

N (vac) =
∞∑

m,n=1

m

n
|η(n)m |2 (3.9)
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is the total number of photons generated from vacuum, and the sum

N (cav) = N (0)+ 2
∞∑

m,n,k=1

m√
nk

[
η(n)∗m η(k)m 〈b̂†nb̂k〉 + Re

(
η(n)m ξ

(k)
m 〈b̂nb̂k〉

)]
(3.10)

describes the influence of the initial state of the field (to obtain equation (3.10) one should
take into account the identity (2.12)). Differentiating equations (3.9) and (3.10) with respect
to τ and performing the summation overm with the help of equations (2.17)–(2.22) or (2.24)
one can obtain the formulae

dN (vac)

dτ
= 2σRe

∞∑
n=1

1

n

p∑
m=1

m(p −m)ρ(n)∗−m (τ)ρ(n)p−m(τ) (3.11)

dN (cav)

dτ
= 2σ

∞∑
n,k=1

〈b̂†nb̂k〉√
nk

p∑
m=1

m(p −m)[ρ(n)∗−m ρ(k)p−m + ρ(k)−mρ(n)∗p−m
]

−2σRe
∞∑

n,k=1

〈b̂nb̂k〉√
nk

p∑
m=1

m(p −m)[ρ(n)−mρ(k)m−p + ρ(n)m ρ
(k)
p−m

]
. (3.12)

Consequently, to calculate the total number of photons one has to know the coefficientsη(n)m
andξ (n)m with the lower indicesm = 1, 2, . . . , p − 1.

4. The ‘semi-resonance’ case (p = 1)

Let us start calculating the Bogoliubov coefficients with the ‘semi-resonance’ casep = 1. It
is distinct, since all the coefficientsη(n)k (t) are equal to zero, and the total number of photons
is conserved. In this specific case one has to solve the set of equations (k, n = 1, 2, . . .)

d

dτ
ξ
(n)
k = (k − 1)ξ (n)k−1− (k + 1)ξ (n)k+1+ 2iγ kξ (n)k (4.1)

with the initial conditionsξ (n)k (0) = δkn. To get rid of the infinite number of equations we
introduce thegenerating function

X(n)(z, τ ) =
∞∑
k=1

ξ
(n)
k (τ )zk (4.2)

where z is an auxiliary variable. Using the relationkzk = z(dzk/dz) one obtains the
first-order partial differential equation

∂X(n)

∂τ
= (z2− 1+ 2iγ z

)∂X(n)
∂z
+ ξ (n)1 (τ ) (4.3)

whose solution satisfying the initial conditionX(n)(0, z) = zn reads

X(n)(z, τ ) =
[
zg(τ)− S(τ)
g∗(τ )− zS(τ)

]n
+
∫ τ

0
ξ
(n)

1 (x) dx (4.4)

where

S(τ) = sinh(aτ)/a g(τ) = cosh(aτ)+ iγ S(τ). (4.5)

Differentiating equation (4.4) overz we find

ξ
(n)

1 (τ ) = n[−S(τ)]n−1

[g∗(τ )]n+1
. (4.6)
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Putting this expression into the integral on the right-hand side of equation (4.4) we arrive
at the final form of the generating function

X(n)(z, τ ) =
[
zg(τ)− S(τ)
g∗(τ )− zS(τ)

]n
−
[−S(τ)
g∗(τ )

]n
(4.7)

which satisfies automatically the necessary boundary conditionX(n)(τ, 0) = 0. The right-
hand side of (4.7) can be expanded into the power series ofz with the aid of the formula [44]
(volume 3, section 19.6, equation (16))

(1− t)b−c(1− t + xt)−b =
∞∑
m=0

tm

m!
(c)mF (−m, b; c; x)

whereF(a, b; c; x)means the Gauss hypergeometric function, and(c)k ≡ 0(c+k)/0(c). In
turn, the function(c)mF (−m, b; c; x) with an integerm is reduced to the Jacobi polynomial
in accordance with the formula [44] (volume 2, section 10.8, equation (16))

(c)mF (−m, b; c; x) = m!(−1)mP (b−m−c, c−1)
m (2x − 1).

Consequently

(1− t)b−c(1− t + xt)−b =
∞∑
m=0

(−t)mP (b−m−c, c−1)
m (2x − 1) (4.8)

and the coefficientξ (n)m (τ ) reads

ξ (n)m (τ ) = (−κ)n−mλn+mP (n−m,−1)
m

(
1− 2κ2

)
(4.9)

where

κ(τ) = S√
gg∗
≡ S(τ)√

1+ S2(τ )
(4.10)

λ(τ) =
√
g(τ)/g∗(τ ) ≡

√
1− γ 2κ2+ iγ κ |λ| = 1. (4.11)

The form (4.9) is useful forn > m. To find a convenient formula in the case ofn 6 m we
introduce thetwo-dimensionalgenerating function

X(τ, z, y) =
∞∑
m=1

∞∑
n=1

zmynξ (n)m (τ ) =
∞∑
n=1

X(n)(z, τ )yn

= yz

[g∗(τ )+ yS(τ)][g∗(τ )− g(τ)yz+ S(τ)(y − z)] . (4.12)

The coefficient atzm in (4.12) yields another one-dimensional generating function:

Xm(τ, y) =
∞∑
n=1

ynξ (n)m (τ ) = y [g(τ)y + S(τ)]m−1

[g∗(τ )+ yS(τ)]m+1
. (4.13)

Then equation (4.8) results in the expression

ξ (n)m = (1− κ2)κm−nλn+mP (m−n, 1)
n−1

(
1− 2κ2

)
. (4.14)

Note that the functionsS(τ), cosh(aτ) andκ(τ) are real for any value ofγ . Forγ > 1 it is
convenient to use instead of (4.5) the equivalent expressions in terms of the trigonometric
functions

S̃(τ ) = sin(ãτ )/ã g̃(τ ) = cos(ãτ )+ iγ S̃(τ ). (4.15)
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In the special caseγ = 1 one hasS(τ) = τ andg(τ) = 1+ iτ . In particular

ξ (n)m (τ ; γ = 1) = τm−n(1+ iτ)n−1

(1− iτ)m+1
P
(m−n, 1)
n−1

(
1− τ 2

1+ τ 2

)
. (4.16)

Knowledge of the two-dimensional generating function enables to verify the unitarity
condition (2.13). Consider the productX∗(τ, z1, y1)X(τ, z2, y2), which is a four–variable
generating function for the productsξ (n)∗m ξ

(k)
l . Takingy1 =

√
u exp(iϕ), y∗2 =

√
u exp(−iϕ)

and integrating overϕ from 0 to 2π one obtains a three–variable generating function∑
z∗m1 zl2u

nξ (n)∗m ξ
(n)
l . Dividing it by u and integrating the ratio overu from 0 to 1 one

finally arrives at the relation
∞∑

n,m,l=1

z∗m1 zl2
1

n
ξ(n)∗m ξ

(n)
l = − ln(1− z∗1z2) =

∞∑
k=1

1

k
(z∗1z2)

k (4.17)

which is equivalent to the special case of (2.13) forη(k)m ≡ 0:∑
n

1

n
ξ(n)∗m (τ)ξ

(n)
j (τ ) ≡ 1

m
δmj . (4.18)

Suppose that initially there was a single excited mode labeled with an indexn. Due to
the linearity of the process one may assume that the mean number of photons in this mode
wasνn = 1. Then the mean occupation number of themth mode atτ > 0 equals

N (n)
m =

m

n

[
ξ (n)m

]2 = m

n

[
(1− κ2)κm−nP (m−n, 1)

n−1

(
1− 2κ2

)]2
(4.19)

whereκ is given by (4.10). Although equation (4.19) seems asymmetric with respect to the
indicesm andn, in fact the relation

N (n)
m = N (m)

n (4.20)

holds. To prove it we calculate the generating function

Q(u, v) ≡
∞∑

m,n=1

vmunN (n)
m . (4.21)

It is related to the functionX(z, y) (4.12) as follows:

Q(u, v) = v d

dv

∫ u

0
dr
∫ 2π

0

∫ 2π

0

dϕ dψ

(2π)2
X
(√
reiϕ,
√
veiψ

)
X∗
(√
reiϕ,
√
veiψ

)
.

Having performed all the calculations we arrive at the expression

2Q(u, v) = 1+ uv − κ2(u+ v){[
1+ uv − κ2(u+ v)]2− 4uv(1− κ2)2

}1/2 − 1. (4.22)

Then equation (4.20) is a consequence of the relationQ(u, v) = Q(v, u).
The initial stage of the evolution ofN (n)

m (τ ) does not depend on the detuning
parameterγ , since the principal term of the expansion of (4.19) with respect toτ yields

N (n)
n±q(τ → 0) = n± q

n

[
n(n± 1) · · · (n± q ∓ 1)

q!

]2

τ 2q .

However, the further evolution is sensitive to the value ofγ . If γ 6 1, then the function
N (n)
m (τ ) has many maxima and minima (especially for large values ofm and n), but

finally it decreases asymptotically asmna4/ cosh4(aτ). In contrast, ifγ > 1, then the
function N (n)

m (τ ) is periodic with the periodπ/ã, and it turns into zero forτ = kπ/ã,
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k = 1, 2, . . . (excepting the casem = n). The magnitude of the coefficientN (n)
m (τ )

decreases approximately asγ−2|m−n| for γ � 1.
In the special case of a cavity filled in with ahigh-temperature thermal radiation,

the initial distribution over modes readsνn(T ) = T/n, constantT being proportional to
the temperature. ThenN {T }m = ∑

n νn(T )N (n)
m . This sum is simplyT multiplied by the

coefficient atvm in the Taylor expansion of the function

Q̃(v) =
∫ 1

0

du

u
Q(u, v) = ln

1− vκ2(τ )

1− v .

Thus we have

E {T }m = mN {T }m = T (1− [κ(τ)]2m
)
.

We see that the resonance vibrations of the wall cause an effective cooling of the lowest
electromagnetic modes (provided|γ | < 1). The total number of quanta and the total energy
in this example are formally infinite, due to the equipartition law of the classical statistical
mechanics. In reality both these quantities are finite, sinceνn(T ) < T/n at n→∞ due to
the quantum corrections. Other initial conditions in the special case of theexact resonance
(γ = 0) were considered in [22]. The total energy depends on time according to equation
(3.5) withp = 1. An infinite growth of the energy of a classical string whose ends oscillate
at the frequency close toω1 in the case of finite amplitude and detuning (ε ∼ δ ∼ O(1))
was considered in [45].

5. The generic resonance casep > 2

Now we turn to calculating the non-zero Bogoliubov coefficientsy
(n,j)
m (τ ), equations (2.30),

in the generic casep > 2. One can easily verify that in the distinct casej = 0 the functions
y(n,0)m (τ ) with m > 1 are given by the formulae forξ (n)m (τ ) found in section 4, provided one
replacesτ by σpτ andγ by σγ (recall thatσ ≡ (−1)p), whereasy(n,0)m (τ ) ≡ 0 for m 6 0.
In the generic casej 6= 0 it is reasonable to introduce a generating function in the form of
the Laurent seriesof an auxiliary variablez

R(n,j)(z, τ ) =
∞∑

m=−∞
y(n,j)m (τ )zm (5.1)

since the lower index of the coefficienty(n,j)m runs over all integers from−∞ to∞. One
can verify that the function (5.1) satisfies thehomogeneousequation

∂R(n,j)

∂τ
=
[
σ

(
1

z
− z

)
+ 2iγ

](
j + pz ∂

∂z

)
R(n,j). (5.2)

The solution to (5.2) satisfying the initial conditionR(n,j)(z, 0) = zn reads

R(n,j)(z, τ ) = z−j/p
[
zg(pτ)+ σS(pτ)
g∗(pτ)+ zσS(pτ)

]n+j/p
(5.3)

where the functionsS(τ) andg(τ) were defined in (4.5). The coefficients of the Laurent
series (5.1) can be calculated with the aid of the Cauchy formula

y(n,j)m (τ ) = 1

2π i

∮
C

dz

zm+1
R(n,j)(z, τ ) (5.4)

where the closed curveC rounds the pointz = 0 in the complex plane in the anticlockwise
direction. Making a scale transformation one can reduce the integral (5.4) with the integrand
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(5.3) to the integral representation of the Gauss hypergeometric function [44] (volume 1,
section 2.1.3)

F(a, b; c; x) = −i0(c) exp(−iπb)

2 sin(πb)0(c − b)0(b)
∮ (0+)

1

tb−1(1− t)c−b−1

(1− tx)a dt (5.5)

where Re(c− b) > 0, b 6= 1, 2, 3, . . ., and the integration contour begins at the pointt = 1
and passes around the pointt = 0 in the positive direction. After some algebra one can
obtain the expression

y(n,j)m = − 0(−m− j/p)0(1+ n+ j/p) sin
[
π(m+ j/p)]

π0(1+ n−m)
× (σκ)n−mλm+n+2j/pF

(
n+ j/p , −m− j/p ; 1+ n−m ; κ2

)
. (5.6)

Hereafter we assumeκ ≡ κ(pτ) andλ ≡ λ(pτ), the functionsκ(x) andλ(x) being defined
as in (4.10) and (4.11). Using the known formula

0(−z) sin(πz) = −π/0(z+ 1) (5.7)

one can eliminate the gamma function of a negative argument:

y(n,j)m = 0(1+ n+ j/p)(σκ)n−mλm+n+2j/p

0(1+m+ j/p)0(1+ n−m) F
(
n+ j/p , −m− j/p ; 1+ n−m ; κ2

)
.

(5.8)

The form (5.8) gives an explicit expression for the coefficientξ
(j+pn)
j+pm with 0 6 m 6 n.

Moreover, it clearly shows the fulfilment of the initial conditiony(n,j)m (τ = 0) = δmn.
Transforming the hypergeometric function with the aid [44, 46] of the formula

lim
c→−n

F (a, b; c; x)
0(c)

= (a)n+1(b)n+1x
n+1

(n+ 1)!
F(a + n+ 1, b + n+ 1; n+ 2; x)

(n = 0, 1, 2, . . .) and the identity (5.7) one obtains an equivalent expression

y(n,j)m = 0(m+ j/p)(−σκ)m−nλm+n+2j/p

0(n+ j/p)0(1+m− n) F
(
m+ j/p , −n− j/p ; 1+m− n ; κ2

)
(5.9)

which gives a convenient form of the coefficientξ (j+pn)j+pm for m > n. Equation (5.6) with
negative values of the lower index gives an explicit expression for the non-zero coefficients
η
(pn+j)
pk−j (k > 1, n > 0):

η
(pn+j)
pk−j = −

0(k − j/p)0(1+ n+ j/p) sin
[
π(k − j/p)]

π0(1+ n+ k)
× (σκ)n+kλn−k+2j/pF

(
n+ j/p , k − j/p ; 1+ n+ k ; κ2

)
. (5.10)

Note that expressions (5.8)–(5.10) are also valid forj = 0. In this case they coincide with
the formulae obtained in section 4. Equations (5.8)–(5.10) immediately give the short-time
behaviour of the Bogoliubov coefficients atτ → 0: it is sufficient to putκ ≈ pτ , λ ≈ 1
and to replace the hypergeometric functions by 1. In this limit the detuning parameterγ

drops out of the expressions (in the leading terms of the Taylor expansions).
At τ → ∞ we have the following asymptotics of the functionsκ(pτ) and λ(pτ) (if

γ 6 1)

κ ≈ 1− 1
2S
−2(pτ)→ 1 λ→ a + iγ τ →∞.
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Then equation (5.6), together with the known asymptotics of the hypergeometric function
F(a, b; a + b + 1; 1− x) at x � 1 [44, 46]

F(a, b; a + b + 1; 1− x) = 0(a + b + 1)

0(a + 1)0(b + 1)

[
1+ abx ln(x)+O(x)] (5.11)

lead to the asymptotic expression for the Bogoliubov coefficients

y(n,j)m (τ � 1) = sin[π(m+ j/p)]
π(m+ j/p) (a + iγ )m+n+2j/pσ n−m

[
1+O

(
mn

S2
ln S

)]
. (5.12)

For γ < 1 the correction is of ordermnτ exp(−2apτ), while for γ = 1 it is of order
mn ln(τ )/τ 2.

One can verify that the generating function (5.3) satisfies the recurrence relation

∂R(q,j)

∂τ
= (j + qp){σ [R(q−1,j) − R(q+1,j)

]+ 2iγR(q,j)
}
. (5.13)

Its immediate consequence is an analogous relation for the Bogoliubov coefficients with the
same lower indices:

d

dτ
ρ(n)m = n

{
σ
[
ρ(n−p)m − ρ(n+p)m

]+ 2iγρ(n)m
}
. (5.14)

Equation (5.14) is valid forn > p (whenq > 1 andj > 1 in (5.13)), since the coefficients
ρ(n)m are not defined whenn < 0. However, using the chain of identities

R(−1,j)(z) = z−j/p
[
S + gz
g∗ + Sz

]j/p−1

= 1

z

(
1

z

)j/p−1[
S + g∗/z
g + S/z

]1−j/p

= 1

z

[
R(0,p−j)(1/z∗)

]∗ = 1

z

∞∑
k=−∞

y
(0,p−j)∗
k

(
1

z

)k
=

∞∑
k=−∞

y
(0,p−j)∗
−k−1 zk

one can obtain the firstp − 1 recurrence relations

d

dτ
ρ(n)m = n

{
σ
[
ρ
(p−n)∗
−m − ρ(p+n)m

]+ 2iγρ(n)m
}

n = 1, 2, . . . , p − 1. (5.15)

To treat the special casen = p (it corresponds to the distinguished subset withj = 0) one
should take into account thatR(0,0)(z) ≡ 1, which means formally thatρ(0)m = δm0. So the
last recurrence relation reads

d

dτ
ρ(p)m = p

{−σρ(2p)m + 2iγρ(p)m

}
m > 1

(recall thatρ(p)m ≡ 0 for m 6 0). Now one can verify that the unitarity conditions (2.27),
(2.28) are the consequencies of the equations (5.14) and (5.15).

Differentiating the ‘vacuum’ part of sum (2.15) with respect toτ and performing the
summation over the upper indexn with the aid of (5.14), (5.15) (recalling that the coefficients
ρ(n)m are different from zero provided the differencen−m is a multiple ofp), one can obtain
the formula for the photon generation rate from vacuum in each mode (06 j 6 p − 1,
q = 0, 1, 2, . . .)

d

dτ
N (vac)
j+pq = −2σ(j + pq)Re

[
ξ
(j)

j+pqη
(p−j)
j+pq

]
= 2p

√
1− γ 2κ2

sin(πj/p)0(q + j/p)0(1+ q + j/p)0(2− j/p)
π0(j/p)0(q + 1)0(q + 2)

κ2q+1

×F (q + j/p , −j/p ; 1+ q ; κ2
)
F
(
q + j/p , 1− j/p ; 2+ q ; κ2

)
. (5.16)
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We see that there is no photon creation in the modes with numbersp, 2p, . . .. At τ � 1 we
haveṄ (vac)

j+pq ∼ τ 2q+1. In the long-time limit the photon generation rate tends to the constant
value (if γ < 1)

d

dτ
N (vac)
j+pq =

2ap2 sin2(πj/p)

π2(j + pq)
[
1+O

(pq
S2

ln S
)]

apτ � 1. (5.17)

For q � 1 and for a fixed value ofκ one can simplify the right-hand side of (5.16) using
Stirling’s formula for the Gamma functions and the easily verified asymptotic formula

F(a, b; c; z) ≈ (1− az/c)−b a, c � 1.

In this case
d

dτ
N (vac)
j+pq ≈ 2p

√
1− γ 2κ2

sin(πj/p)0(2− j/p)κ2q+1

π0(j/p)q2(1−j/p)(1− κ2
)1−2j/p q � 1. (5.18)

In particular, ifq � S2(pτ)� 1, then

d

dτ
N (vac)
j+pq ≈ 2pa

sin(πj/p)0(2− j/p)(S2/q)2(1−j/p)

π0(j/p)S2
exp(−q/S2). (5.19)

Comparing (5.17) and (5.19), one can conclude that the number of the effectively excited
modes (i.e. the modes with a time-independent photon generation rate) increases in time
exponentially, approximately asS2(τ )/ ln S(τ).

Differentiating equation (3.11) once again overτ , one can perform the summation over
the upper indexn with the aid of equations (5.14), (5.15) to obtain a closed expression for
the second derivativeof the total number of ‘vacuum’ photons:

d2

dτ 2
N (vac) = 2Re

p−1∑
m=1

m(p −m)[ξ (m)m ξ
(p−m)
p−m + η(p−m)∗m η

(m)∗
p−m

]
d2

dτ 2
N (vac) = 2

p−1∑
m=1

m(p −m)
{
m(p −m)

[
κ

p
F

(
m

p
, 1− m

p
; 2 ; κ2

)]2

+ (1− 2γ 2κ2
)
F

(
m

p
, −m

p
; 1 ; κ2

)
F

(
m

p
− 1 , 1− m

p
; 1 ; κ2

)}
. (5.20)

In the short-time limit one obtains

N̈ (vac) = 1
3p(p

2− 1) |apτ | � 1. (5.21)

In the long-time limit the equations (5.7), (5.11) and
∑p−1

m=1 sin2(πm/p) = p/2 lead to
another simple expression (providedp > 2)

N̈ (vac) = 2a2p3/π2 apτ � 1, a > 0. (5.22)

Consequently, the total number of photons created from vacuum due to NSCE increases in
time quadratically both in the short-time and in the long-time limits (although with different
coefficients).

It is interesting to compare equation (5.22) with the total rate of change of the number of
‘cavity’ photons due to non-vacuum initial conditions. Using equation (3.12) and replacing
the coefficientsρ(n)m by their asymptotic values (5.12) one can obtain the expression

dN (cav)

dτ
= 4ap2

π2

p−1∑
m=1

sin2(πm/p)

∞∑
n,k=0

σn+k√
(m+ pn)(m+ pk)

×{〈b̂†m+pnb̂m+pk〉(a + iγ )k−n − σRe
[〈b̂m+pnb̂m+pk〉(a + iγ )k+n+1

]}
(5.23)
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which holds providedapτ � 1 and a > 0. For the physical initial states the sum
on the right-hand side of (5.23) is finite. This is obvious if a finite number of modes
was excited initially. But even if the cavity was initially in a high-temperature thermal
state, so that〈b̂†nb̂k〉 = δnkT /n, 〈b̂nb̂k〉 = 0, the sum overn, k yields a finite value
T
∑∞

n=0 (m + pn)−2. Consequently, the total number of ‘non-vacuum’ photons increases
in time linearly at apτ � 1, whereas the total number of quanta generated from vacuum
increasesquadratically in the long time limit. At the same time, the total ‘vacuum’ and
‘non-vacuum’ energies increase exponentially ifγ < 1 (see section 3). The origin of the
difference in the behaviours of the total energy and the total number of photons becomes
clear, if one looks at the asymptotic formulae (5.17)–(5.19). They show that the rate of
photon generation in themth completely excited mode decreases approximately as 1/m

(excepting the modes whose numbers are multiples ofp), so the stationary rate of the
energygeneration asymptotically almost does not depend onm. In turn, the number of the
effectively excited modes increases in time exponentially. These two factors lead to the
exponential growth of the total energy (see also [27] in the special caseγ = 0).

6. The ‘principal resonance’ case (p = 2)

Some of the formulae obtained in the preceding section can be simplified in the special case
p = 2. In this case there are two subsets of non-zero Bogoliubov coefficients. The first
one consists of the coefficients with even upper and lower indicesξ

(2q)
2k which are reduced

to the coefficientsξ (q)k of the ‘semi-resonance’ case (sinceη(2q)2k ≡ 0, this subset does not
contribute to the generation of new photons). The second subset is formed by the ‘odd’
coefficients which can be written (κ ≡ κ(2τ)) as

ξ
(2n+1)
2m+1 =

0(n+ 3/2)κn−mλm+n+1

0(m+ 3/2)0(1+ n−m)
×F (n+ 1/2 , −m− 1/2 ; 1+ n−m ; κ2

)
n > m (6.1)

ξ
(2n+1)
2m+1 =

(−1)m−n0(m+ 1/2)κm−nλm+n+1

0(n+ 1/2)0(1+m− n)
×F (m+ 1/2 , −n− 1/2 ; 1+m− n ; κ2

)
m > n (6.2)

η
(2n+1)
2k+1 =

(−1)k−10(k + 1/2)0(n+ 3/2)κn+k+1λn−k

π0(2+ n+ k)
×F (n+ 1/2 , k + 1/2 ; 2+ n+ k ; κ2

)
. (6.3)

All the ‘odd’ coefficients can be expressed [47] in terms of the complete elliptic integrals

K(κ) =
∫ π/2

0

dα√
1− κ2 sin2 α

E(κ) =
∫ π/2

0
dα
√

1− κ2 sin2 α.

In particular

ξ
(1)
1 =

2

π
λ(κ)E(κ) η

(1)
1 =

2

πκ

[
κ̃2K(κ)− E(κ)

]
(6.4)

where

κ̃ ≡
√

1− κ2 = [1+ S2(2τ)
]−1/2

. (6.5)
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However, the analogous expressions for the coefficientsξ (n)m andη(n)m with m, n > 1 appear
rather cumbersome (they can be written as linear combinations of the functionsE(κ) and
K(κ) multiplied by some rational functions ofκ and κ̃), so we do not bring them here.

The photon generation rate from vacuum in the principal cavity mode (m = 1) reads

dN (vac)

1

dτ
= −2Re

[
η
(1)
1 ξ

(1)
1

] = 8
√

1− γ 2κ2

π2κ
E(κ)

[
E(κ)− κ̃2K(κ)

]
. (6.6)

The total number of photons in the first mode can be obtained by integrating equation (6.6).
Taking into account the relation√

1− γ 2κ2 dτ = dκ/κ̃2 (6.7)

and the differentiation rules for the complete elliptic integrals

dK(κ)
dκ

= E(κ)
κκ̃2
− K(κ)

κ

dE(κ)
dκ
= E(κ)− K(κ)

κ
(6.8)

one can verify the following result:

N (vac)

1 (κ) = 2

π2
K(κ)

[
2E(κ)− κ̃2K(κ)

]− 1

2
. (6.9)

Making the transformation [44, 46]

K
(

1− κ̃
1+ κ̃

)
= 1+ κ̃

2
K(κ) E

(
1− κ̃
1+ κ̃

)
= E(κ)+ κ̃K(κ)

1+ κ̃
one can rewrite equations (6.4) and (6.9) in the form given in [21] forγ = 0. Using the
asymptotic expansions of the elliptic integrals [48] atκ → 1

K(κ) ≈ ln
4

κ̃
+ 1

4

(
ln

4

κ̃
− 1

)
κ̃2+ · · ·

E(κ) ≈ 1+ 1

2

(
ln

4

κ̃
− 1

2

)
κ̃2+ · · ·

one can obtain the formula

N (vac)

1 (τ � 1) = 8a

π2
τ + 4

π2
ln

(
2

a

)
− 1

2
+O(τe−4aτ

)
a > 0. (6.10)

In the special case ofγ = 1 one can obtain the expansion

N (vac)

1 (τ � 1) = 4

π2
ln τ + 12

π2
ln 2− 1

2
+O(τ−2).

If γ > 1, the number of photons in the principal mode oscillates with the periodπ/(2ã).
For γ � 1 one can writeκ ≈ sin(2ãτ )/ã, i.e. |κ| � 1. In this case

N (vac)

1 ≈ κ2

4
≈ sin2(2ãτ )

4ã2
� 1.

The second derivative of the total number of ‘vacuum’ photons can be written as

d2N (vac)

dτ 2
= 2

[
Re
([
ξ
(1)
1

]2)+ ∣∣η(1)1

∣∣2]
= 8

π2κ2

[
κ̃4K 2(κ)− 2κ̃2K(κ)E(κ)+ (1+ κ2− 2γ 2κ4

)
E2(κ)

]
. (6.11)

In the limiting cases this formula yields

N (vac)(τ � 1) ≈ τ 2

N (vac)(τ � 1) = 8a2τ 2/π2+O(τ ) a > 0.
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If γ � 1, then |κ| � 1, but γ 2κ2 ≈ sin2(2ãτ ) ∼ O(1). In this case the Taylor
expansion of the expression (6.11) yieldsN̈ (vac) = 2 cos(4ãτ ) + O(γ−2). Integrating this
equation taking account of the initial conditionṡN (vac)(0) = N (vac)(0) = 0, one obtains
N (vac) ≈ N (vac)

1 ≈ sin2(2ãτ )/(4ã2).

7. Discussion

Let us briefly discuss the main results of the paper. We have solved the problem of the
photon generation due to the non-stationary Casimir effect in an ideal Fabry–Perot cavity
with an equidistant spectrum, if the cavity walls perform small (quasi)resonance oscillations
at the frequencyωw = p(πc/L0)(1+ δ), for any integer value ofp = 1, 2, . . . . Namely,
we have found explicit analytical expressions for the Bogoliubov coefficients, the rate of
photon production in each mode and the total energy in the case of an arbitrary (although
small compared withωw) detuning. These expressions areexact consequences of the
reduced equations (2.24) or (5.14), (5.15). One should remember, however, that the reduced
equations arise after averaging the exact equation (2.7) over fast oscillations and neglecting
second-order terms with respect to the small parametersε and δ. Consequently, the ‘true’
functionsN (t), E(t), etc. could differ from those given above in terms proportional toε2.
But such a difference seems quite insignificant under realistic conditions. As was shown
in [18, 21], it is hardly possible to obtain the value of the dimensionless amplitude of the
resonancewall vibrationsε exceeding 10−8 in a laboratory. This means that the relative
difference between the ‘true’ magnitude of the photon generation rate (for example) and
that given in section 5 could be of the order of 10−8 (or less) fort < tc ∼ (ω1ε

2)−1. For
ω1 ∼ 1010 s−1 the characteristic timetc is of the order of months or years, and even for
optical frequences it has an order of seconds (although it is unclear as to how to cause the
wall to vibrate at an optical frequency with a sufficiently large amplitude). Another argument
in favour of the solutions obtained is that these solutions satisfyexactly the Bogoliubov
transformation unitarity conditions (2.12)–(2.14).

Note that the rate of photon generation from vacuum in some mode is proportional top2ε

(if γ = 0), and the total generation rate is proportional top3ε2. Actually, the dimensionless
amplitude of the wall oscillationsε is inversly proportional to the frequency, since it is
determined by the maximum possible stresses inside the wall [18, 21]. Thus we see that
increasing the resonance frequency one could achieve, in principle, some amplification of
the number of photons proportional top.

It was shown in the previous studies [10, 14–23] that the photon production from vacuum
due to the NSCEcould be observed under the condition of the strict parametric resonance.
Here it is demonstrated explicitly that the photonscannot be produced if the detuningδ
exceeds the dimensionless amplitudeε. This result confirms once again the statement made
in [21] that the NSCE could be observed only in the resonance regime, ruling out the non-
resonance laws of motion of the wall. The requirements for a possible experiment turn out
to be rather demanding (for example, for the principal frequency about 10 GHz the detuning
should not exceed 100 Hz for the time of the order of at least 0.01 s), but they do not seem
to be absolutely unrealizable.

Another source of trouble is connected with the non-ideality of real cavities. Until now
only a few attempts have been made to take into account different losses in the cavities
with moving boundaries [23, 38, 39], and this problem is still a challenge for theoreticians.
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Appendix

Using equations (2.15) and (2.23) one can express the total energy in all the modes as

E =
∞∑
n=1

1

n
S(n) +

∞∑
n,k=1

〈b̂†nb̂k〉√
nk

U
(nk)

1 + Re
∞∑

n,k=1

〈b̂nb̂k〉√
nk

U
(nk)

2

where

S(n) =
∞∑
m=1

m2
∣∣ρ(n)−m∣∣2 (A.1)

U
(nk)

1 =
∞∑

m=−∞
m2ρ(n)∗m ρ(k)m U

(nk)

2 = −
∞∑

m=−∞
m2ρ(n)m ρ

(k)
−m (A.2)

(to writeU(nk)

2 as a sum from−∞ to∞ one should take into account that the summand in
the last sum of (2.15) is symmetrical with respect ton and k). DifferentiatingU(nk)

1 with
respect toτ and taking into account equations (2.24), after simple algebra one can obtain
the expression

d

dτ
U
(nk)

1 = −p(−1)p
∞∑

m=−∞
m(m+ p)[ρ(n)∗m ρ

(k)
m+p + ρ(k)m ρ(n)∗m+p

]
. (A.3)

Differentiating the above expression once more, one obtains

Ü
(nk)

1 = 4p2U
(nk)

1 + 2iγp2(−1)pχ(nk)1

where

χ
(nk)

1 =
∞∑

m=−∞
m(m+ p)[ρ(k)m ρ(n)∗m+p − ρ(n)∗m ρ

(k)
m+p

]
.

Differentiatingχ(nk)1 one can verify that

χ̇
(nk)

1 = 2iγ (−1)pU̇ (nk)

1 .

Consequently

χ
(nk)

1 = 2iγ (−1)pU(nk)

1 + constant

where the additive constant is determined by the initial conditions. Finally we arrive at the
equation

Ü
(nk)

1 = 4p2(1− γ 2)U
(nk)

1 + 4p2γ 2U
(nk)

1 (0)+ 2iγp2(−1)pχ(nk)1 (0)

with

U
(nk)

1 (0) = n2δnk χ
(nk)

1 (0) = nk[δk,n−p − δn,k−p].
Using the same scheme one can obtain analogous relations for the coefficientU

(nk)

2 :

d

dτ
U
(nk)

2 = p(−1)p
∞∑

m=−∞
mρ(n)m

[
(m+ p)ρ(k)−m−p − (p −m)ρ(k)p−m

]
Ü
(nk)

2 = 4p2U
(nk)

2 − 2iγp2(−1)pχ(nk)2

χ
(nk)

2 =
∞∑

m=−∞
mρ(n)m

[
(m+ p)ρ(k)−m−p + (p −m)ρ(k)p−m

]
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χ̇
(nk)

2 = −2iγ (−1)pU̇ (nk)

2

Ü
(nk)

2 = 4p2(1− γ 2)U
(nk)

2 − 2iγp2(−1)pχ(nk)2 (0)

χ
(nk)

2 (0) = nkδk,p−n.
(A.4)

The calculation of the vacuum contribution to the total energy

E (vac) =
∞∑
n=1

1

n
S(n)

is more involved, since the summation in (A.1) is non longer performed from−∞ to∞,
but over the coefficientsρ(n)m with negativeindicesm only. Differentiating the sum (A.1)
with respect toτ and using equations (2.24) we obtain

Ṡ(n) = 2(−1)pRe
∞∑
m=1

m2ρ
(n)
−m
[
(m+ p)ρ(n)∗−m−p + (p −m)ρ(n)∗p−m

]
. (A.5)

Differentiating the expression (A.5) once again one can obtain after some algebra the
equation

Ë (vac) = 4p2E (vac) + 4p(−1)pγ
∞∑
n=1

1

n
8(n) + 2Re

p∑
m=1

m(p −m)2[mFm + (m+ p)Gm

]
(A.6)

where

8(n) = Im
∞∑
m=1

m2ρ
(n)
−m
[
(p −m)ρ(n)∗p−m − (m+ p)ρ(n)∗−m−p

]
Fm =

∞∑
n=1

1

n

[
ρ(n)∗m ρ(n)m − ρ(n)∗−m ρ(n)−m

]
Gm =

∞∑
n=1

1

n

[
ρ
(n)∗
m+pρ

(n)
m−p − ρ(n)∗p−mρ

(n)
−m−p

]
.

Differentiating the function8(n) over τ and again using equations (2.24), one can verify
that the derivative d9/dτ of the combination9 ≡ ∑∞

n=1
1
n

[
8(n) + p(−1)pγ S(n)

]
can

be written in a form analogous to the last sum (from 1 top) in equation (A.6), but the
symbol Re should be replaced by Im . SinceFm = 1/m due to the identity (2.27) and
Gm = 0 due to (2.28), we have d9/dτ = 0. Taking into account the initial conditions
8(n)(0) = S(n)(0) = 0 one obtains9(τ) = 0. Combining all the terms giving the second
derivative ofE , one can finally arrive at equation (3.1), where the term1

6p
2(p2− 1) is the

value of the sum 2
∑p

m=1 m(p −m)2.
The initial value of the first derivativėE(τ ) is determined by the right-hand sides of

equations (A.3), (A.4) and (A.5) taken atτ = 0, whenρ(n)m = δmn:

Ė(0) = −2pσ
∞∑
n=1

√
n(n+ p)Re〈b̂†nb̂n+p〉 − pσ

p−1∑
n=1

√
n(p − n)Re〈b̂nb̂p−n〉.

Comparing this formula with (3.3) we arrive at equation (3.4).
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